
A TCP Congestion Control Algorithm Based on Deep
Reinforcement Learning Combined with Probe Bandwidth

Mechanism
Mengting Li

School of Software, Yunnan University, Kunming, China
jkc265616@mail.ynu.edu.cn

Xiang Huang
School of Software, Yunnan University, Kunming, China

2580067062@qq.com

Chenyang Jin
School of Software, Yunnan University, Kunming, China

3216380542@qq.com

Yijian Pei*
School of Information Science & Engineering, Yunnan

University, Kunming, China
yndxpyj@163.com

ABSTRACT
The rapid development of emerging Internet services such as live
video, 5G, VR, and the Internet of Things puts forward higher re-
quirements for network throughput, Latency, jitter, and loss. How-
ever, the inefficient bandwidth utilization rate of the existing TCP
protocol cannot meet these requirements. Based on this problem,
this paper proposes an algorithm RL-explore that uses RL (Rein-
forcement learning) combined with bandwidth detection mecha-
nism. The model trained with this algorithm can effectively use
the network bandwidth, and compared to other RL algorithms, it is
easier to converge during training.

CCS CONCEPTS
• Networks; • Network protocols; • Transport protocols; •
Computing methodologies; • Artificial intelligence; • Con-
trol methods;

KEYWORDS
Congestion control, Deep reinforcement learning, Probe Bandwidth
mechanism

ACM Reference Format:
Mengting Li, Xiang Huang, Chenyang Jin, and Yijian Pei*. 2021. A TCP
Congestion Control Algorithm Based on Deep Reinforcement Learning
Combined with Probe Bandwidth Mechanism. In The 5th International
Conference on Computer Science and Application Engineering (CSAE 2021),
October 19–21, 2021, Sanya, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3487075.3487119

1 INTRODUCTION
As the core of TCP, congestion control directly affects the transmis-
sion performance of TCP traditional congestion control algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487119

Figure 1: Timeline Diagram of TCP Reno Algorithm.

can obtain feedback information of network condition by send-
ing packets. Based on the feedback information, the congestion
control algorithm will adjust the congestion control window or
data transmission rate according to the predefined actions, so as
to avoid network congestion. The main goal of congestion control
algorithm is to ensure high bandwidth utilization and low delay
while pursuing fairness and stability. At present, CUBIC [1] and
BBR [2] algorithms are still widely used in the Internet.

1.1 Loss-Based Congestion Control
Loss-based is to assume that loss is network congestion as a prereq-
uisite, and adopt a slow detection mechanism to gradually increase
cwnd. When packet loss occurs, cwnd and ssthresh will be reduced,
such as Reno [3], Cubic, etc. In TCP Reno, the process of conges-
tion control is divided into four stages: (1) Slow start stage. When
there is no loss, every time Sender receives an ACK, CWND adds
a MSS (Maximum Segment Size). At this stage, CWND doubles
every round. If packet loss occurs, CWND is halved and enters
(2) congestion avoidance phase: the window adds one MSS every
round, which is a linear increase. When three repeated ACKs of the
same message are received, it is considered that the next message of
the message is lost. Enter (3) fast retransmission phase, do not wait
for timeout retransmission, but immediately retransmit the lost
message; after completion, enter (4) fast recovery phase, ssthresh
is modified to half of the current CWND, and CWND is equal to

https://doi.org/10.1145/3487075.3487119
https://doi.org/10.1145/3487075.3487119

CSAE 2021, October 19–21, 2021, Sanya, China Mengting Li et al.

ssthresh. Enter (1) the congestion avoidance phase and repeat the
above process.

Figure 1 shows the corresponding throughput changes of TCP
Reno in four stages. In the initial slow start phase within a few
tenths of a second, the throughput exponentially rises. After en-
countering loss, it enters the congestion avoidance stage, and the
throughput increases linearly. After the throughput has been main-
tained near the rated bandwidth for a period of time, congestion
occurs and enters the fast retransmission phase.

The disadvantage of Loss-Based CC is that the throughput of the
algorithm drops rapidly whenever there is a loss. Even in a network
without random loss like Figure 1, its bandwidth utilization is not
high. In a network with large random loss, the behavior of halving
the window size will seriously reduce its performance. This bad
situation not only occurs on a single link, but also on multiple links.
The low channel utilization of the MPTCP protocol stems from the
abrupt cwnd growth policy [4].

1.2 RL-Based Congestion Control
The characteristic of this kind of algorithm is that there is no specific
congestion signal, but with the help of deep neural network, based
on the training data, using deep reinforcement learning method to
train a control strategy. RL-based abandoned the traditional deci-
sion mechanism of congestion control, and let the decision network
of DRL to choose the adjustment action of congestion control. The
purpose of these efforts is to improve the overall performance of
TCP data transmission in traditional Internet architectures, such as
high throughput and low latency, and to ensure a certain degree of
fairness and robustness as far as possible. RL-based tries to shield
the difference of the underlying network environment and uses a
general congestion control algorithm model to deal with different
network environment. This approach is more dependent on the in-
put training set (historical network model), as well as how to select
the state, action, reward and training algorithm of reinforcement
learning.

1.3 ProbeBW Combined with RL-Based
In the process of training using the RL algorithm, we found that
it takes a long time for the model to finally converge. So is there
any way to make the model converge faster? Our proposed RL
algorithm combined with ProbeBW (Probe Bandwidth) mechanism
can do this. Simply put, we have added a constraint mechanism
to DRL. We use the ProbeBW mechanism. Under the premise that
the RL policy does not choose to reduce the send rate, the policy
will periodically explore environment bandwidth. This ensures that
we can obtain the true bandwidth of the network environment in
most cases. Next, enter the detected real bandwidth as part of the
state into the RL policy. Obviously, this helps RL save the process of
learning to detect network bandwidth. Therefore, it is not difficult
to understand that the convergence rate of RL-explore exceeds RL.
Figure 2 shows that the cumulative discount reward of RL-explore
also exceeds RL.

Figure 2: Convergence SpeedDifference betweenRL-explore
(Our Approach) and RL-Based.

2 RELATEDWORK
As a reliable transport layer protocol, the TCP protocol ensures
its reliability through a series of mechanisms such as packet loss
retransmission, flow control, and congestion control.

Most TCP protocols are optimized for congestion control. Most
TCP protocols achieve the purpose of congestion control by con-
trolling the change of CWND. If there is congestion, CWND will
be reduced; otherwise, CWND will be increased (such as Reno and
Cubic). The traditional work of congestion control is mostly based
on the simplified network model (mainly packet loss) to judge the
network state, and adopts the heuristic algorithm to adjust the
CWND. In addition, some researchers abandon the use of packet
loss to determine congestion, and instead choose to detect network
Bandwidth and RTT (such as BBR) to avoid the Bandwidth drop
caused by random packet loss. With the development of machine
learning technology and the emergence of Nature DQN [5], more
and more researchers try to apply machine learning technology to
TCP congestion control.

2.1 Performance-Oriented Congestion Control
Like all machine learning researchers, they abandon the traditional
congestion control mechanism that uses heuristic algorithms to
make decisions, and instead let the trained DRL (Deep Reinforce-
ment learning) decision-making network choose the congestion
control adjustment actions. The purpose of these works is to ensure
a certain fairness and robustness on the basis of improving the
overall performance (such as throughput and low delay) of TCP
data transmission. These works focus on how to choose the states,
actions, reward functions and training algorithms of reinforcement
learning.

Li et al. [6] proposed QTCP, an adaptive congestion control
algorithm based on Q-learning, in 2018. Its utility function is:

U = a · log (throuдhput) − b · log (RTT) (1)

The states are selected as average time between packets sent,
average RTT, and average time between packets receiving ACK. In
the action space, discrete actions are selected, which are increased
by 10Byte, decreased by 1Byte and kept the same. QTCP performs
better than TCP New Reno [7] in many network scenarios.

A TCP Congestion Control Algorithm Based on Deep Reinforcement Learning Combined with Probe Bandwidth Mechanism CSAE 2021, October 19–21, 2021, Sanya, China

Yan et al. [8] proposed Indigo, a congestion control algorithm
based on imitation learning, in 2018. Indigo uses the repeatable
experiment simulator Pantheon for offline training, so it can ac-
quire network scenes as expert knowledge, thereby using imitation
learning as its training algorithm. Indigo’s policy network is a
single-layer LSTM network, and the state space uses continuous
states, such as the weighted moving average of queuing delay, send-
ing rate, receiving rate, etc., the size of the current CWND, and the
actions taken in the previous step. The action space is divided into
5 discrete actions, which are carried out to CWND respectively "/2",
"-10", "+0", "+10", "×2" adjustment operation. Indigo shows superior
performance in trained scenarios. Unfortunately, due to the need
to carefully select expertise for each training scenario, Indigo can
only train in a limited number of network scenarios, which means
its generalization ability can’t be guaranteed.

Jay N et al. [9] proposed Aurora in 2019. Aurora uses the delay
gradient, delay ratio, and send ratio as input states. At the same
time, Aurora sets the input state to the state combination of 10 time
slices before the current moment, so as to obtain more sufficient
historical information. Aurora’s action space uses the following
formula:

xt =

{
xt−1 (1 + αat) , at ≥ 0

xt−1
1+αat , at < 0 (2)

Where xt is the sending rate of the data packet, at is output by
the neural network, and a is a constant. Aurora has shown more
performance than traditional algorithms in both fixed-bandwidth
and dynamic-bandwidth single-link network scenarios.

2.2 Congestion control for specific
transmission problems

Nie et al. [10] proposed TCP-RL in 2019 to dynamically select the
initial congestion window. When they measured the Baidu mobile
search service, they found that more than 80% of the TCP data
stream was transmitted during the slow start phase of the algo-
rithm. For these data streams, the key element that determines
their bandwidth utilization is not the adjustment mechanism of the
congestion control rate, but the initial congestion window. Based
on this, TCP-RL regards the initial congestion window selection as
a multi-armed slot machine problem and uses the discounted UCB
algorithm to train it. In the rate adjustment stage, TCP directly uses
the output of the neural network to select one of the 14 existing
congestion control algorithms as the adjustment algorithm for the
current time period. Researchers deployed TCP-RL in a data cen-
ter of Baidu’s mobile search service. After a year of measurement,
TCP-RL can improve the average TCP response time by 23%.

2.3 Congestion Control Combined with
Traditional Algorithms

The pure data-driven DRL congestion control algorithm has the
problems of low stability and low adaptability. The traditional con-
gestion control algorithm has proved its stability after years of
actual deployment and operation. Recent research work has begun
to incorporate the domain knowledge of traditional congestion
control algorithms (Cubic, BBR) into the design of DRL congestion
control algorithms. For example, use traditional congestion control
algorithms to accelerate the training of DRL agents, or use DRL to

directly improve and optimize the decision-making mechanism of
congestion control algorithms.

DeepCC [11] proposed by Abbasloo et al. can optimize the Cubic
algorithm. As we all know, Cubic algorithms tend to fill up the
buffer, so their adjusted cwnd is usually greater than the optimal.
DeepCC combined with Cubic’s adjustment results to establish a
maximum value to avoid sending in this situation. The simulation
results show that DeepCC improves the average RTT of traditional
algorithms without sacrificing bandwidth utilization.

The Eagle [12] proposed by Emara et al. in 2020 utilizes the
expert knowledge of BBR algorithm to optimize the trained DRL
congestion control algorithm. Eagle designs BBR-like exponential
startup, empties queues and detects bandwidth in three different
state phases. Secondly, Eagle uses a synchronous BBR algorithm
to speed up the training process and optimize the movement selec-
tion strategy by periodically generating some adjustment actions
into the training. Unfortunately, the experimental results show
that Eagle performs better than other classical algorithms but not
significantly better than BBR.

Abbasloo et al. proposed a hybrid algorithm based on Cubic and
DRL [13]. By testing the performance of DRL-based algorithms and
TCP Cubic on dynamic links, they found that DRL-based algorithms
have problems such as slow convergence speed and higher com-
putational complexity. Therefore, in the hybrid algorithm, DRL is
responsible for collecting information in each fixed time period and
calculating a basic CWND. Then in the next period, Cubic adjusts
this CWND according to its own control logic. Experiments show
that in this hybrid algorithm, DRL can help Cubic adapt to changes
in network bandwidth faster.

3 DRL APPROACH IS TO CONGESTION
CONTROL

This section gives a brief introduction to RL, DRL, and why DRL
can be used in congestion control.

3.1 Background: RL and DRL
In RL [14] (reinforcement learning), the task of the agent is to
solve the problem of sequential decision-making, which is realized
through the interaction with the Environment. This problem can be
modeled by the Markov Decision Process (MDP). Simply put, MDP
is a cyclical process in which an Agent interacts with the Environ-
ment by taking Action to change its State and obtain Reward. MDP
can be described by the five-tuple ⟨S,A, P ,R,γ ⟩, whereA represents
the action space, P is the state transition probability, and P(s ′ |s,a)
represents the probability of transitioning to state s ′ after taking
action a in state s , R is the reward function, and γ ∈ [0, 1] is the
discount factor, which reflects the importance of the agent to the
future reward. The strategy of the reinforcement learning agent is
represented by π : S × A → [0, 1], and the agent chooses actions
according to the strategy π .

Traditional reinforcement learning uses a tabular approach to
represent strategy π . However, when the state-action space is large,
the table method cannot continue to be used, because the storage of
tables consumes a very large amount of memory, which is also the
bottleneck that prevents traditional reinforcement learning from
being widely used.

CSAE 2021, October 19–21, 2021, Sanya, China Mengting Li et al.

In DRL [15] (Deep Reinforcement Learning), we use neural net-
work with parameter θ to approximate strategy π , and use πθ to
represent strategy.

3.2 RL Applied to Congestion Control
The flow of congestion control can be summarized as follows: infer
the network state according to the network feedback information,
so as to adjust the CWND or send rate.

Traditional heuristic congestion control algorithms are often
based on ideal assumptions about the network state, and use pre-
defined actions to adjust CWND according to different network
states, such as reducing CWND when packet loss occurs.

The RL-Based congestion control process can be abstracted as a
partially observable Markov decision process. States are network
statistics collected in the past period of time. After the sender has
determined the sending rate xt , it will observe the results sent at
that rate and determine the statistical vector based on the received
data packets.

Action will change the sending rate. In this article, the Agent’s
Action is to change the sending rate.

Reward settings. Reward is usually related to the delay, packet
loss rate, and sending rate of network statistics. The weight setting
of specific parameters is related to specific applications. For exam-
ple, the weight of the sending rate can be increased for large file
transmission applications, and the weight of delay can be increased
for online games that require low latency.

4 MODEL DESIGN
Aiming at the adaptability of traditional congestion control algo-
rithms, we propose and implement the Probe Bandwidth mech-
anism combined with the adaptive congestion control algorithm
RL-explore of the deep reinforcement learning framework. This
chapter mainly introduces the background knowledge of deep rein-
forcement learning, the algorithm design and specific implementa-
tion of RL-explore. It should be noted that the work in this chapter
only discusses the adaptability of TCP flows under a single link.

4.1 Architecture
We model the congestion control problem as a sequential deci-
sion problem under the framework of reinforcement learning. The
specific meanings of agents, states, actions, and rewards in the
reinforcement learning framework are as follows:

Agent. Set on the sender of the TCP connection. Its main job is
to observe the network status and adjust the sending rate according
to the decision-making network. The decision-making network is
a fully connected layer network consisting of three layers.

State. It is composed of data collected in one or more statistical
intervals in the past. Each time a packet is received, the event time
and event type (ACK or DROP) of the current packet will be saved.
After each statistical interval is over, the throughput, latency, loss
and other information in the last period of time can be obtained by
calculation. The Latency is the average latency of each packet. The
state of RL-explore is composed of throuдhputmax , loss , send rate ,
avд_latency. Of course, these data have been normalized before
being used. In the t-th statistical interval, the observed state can be

expressed as:

obs = (throuдhputmax , loss, send rate,avд_latency) (3)

Where throuдhputmax is the maximum throughput in the past 5
time periods, and loss is the packet loss rate in the last time pe-
riod, the send rate is the sending rate in the last time period, and
avд_latency is the average delay of the packet in the last time
period.

Action. The action space of RL-explore is composed of three
discrete actions, namely "×1.25", "×1", and "/1.25".

Among them, "×1.25" means that if this action is selected, the
current sending rate will be multiplied by 1.25 and then assigned to
the current sending rate. "×1" means that the current sending rate
will not be changed, and "/1.25" means that the current sending rate
is divided by 1.25 and then assigned to the current sending rate.

Reward. We use the linear reward function to train RL-explore.
After the t-th statistical interval is over, the state St can be obtained,
and the state St is input into the neural network. The agent will
take an action at , and then enter the t+1-th statistical interval. After
the t+1th statistical interval ends, the state transitions to st+1, and
the agent can get the reward rt = R(St ,at) for taking action at
in the state St . The performance of TCP is closely related to con-
gestion control. Different applications have different performance
requirements for the network. They are roughly divided into three
categories: high throughput, low latency, and low loss. Considering
the above three situations comprehensively, we reward throughput,
penalty loss and delay when designing RL-explore. The specific
reward function is as follows:

r = log throuдhputmax − 10 × avд_latency − 10 × loss (4)

Among them, throuдhputmax , loss ,avд_latency represent the same
meaning as in State.

ProbeBW. As mentioned earlier, our method is not a pure data-
driven RL method, but is similar to the RL method combined with
traditional congestion control methods. However, it is not exactly
the same as the method mentioned in section 2.3. We are adding
some mechanisms in the traditional congestion control algorithm
to the RL method. For this article, we have added a bandwidth
similar to BBR to the RL method. The mechanism of the detection
mechanism. The function of ProbeBW is that after several statistical
intervals, if the action selected by the current decision-making
network is not to reduce the sending rate, ProbeBW will increase
the current send rate by 1.25 times. The advantage of this is that RL-
explore can stably detect the maximum bandwidth of the current
environment, help it adapt to the network environment with high-
speed and dynamic changes in bandwidth, and improve bandwidth
utilization.

4.2 Training
We train our agent in simple-emulator, which is an opensource gym.
This environment uses a series of parameters to simulate network
links. Our model is trained using the PPO algorithm [16].

4.3 Packet-based and RTT-based
Packet-based and RTT-based. In our experiment, the Agent is
the sender and its action is to adjust the send rate. To formalize this,
we use MIs [17]. MIs refer to the division of time into continuous

A TCP Congestion Control Algorithm Based on Deep Reinforcement Learning Combined with Probe Bandwidth Mechanism CSAE 2021, October 19–21, 2021, Sanya, China

Figure 3: Packet-based and RTT-based Methods in a 15-
second Trace of the Throughput on a Link which Alternates
between 1.5 and 6 Mbps.

time periods, called monitoring intervals (MIs), whose length is
usually 1 to 2 RTT. In the initial stage of each MIs, the sender can
set its sending rate xt , and then keep it unchanged throughout the
MI. The default length of MIs is usually RTT, but our experiment
tried two lengths, Packet numbers and RTT. Figure 3 compares the
two methods:

Packet-based. The packet number refers to the number of pack-
ets ack by the receiver, including all packets including Drop and
Finished packets. In our experiments, this packer number is usually
set to 50, which means that every time the receiver confirms 50
packets, it represents one MIs.

RTT-based. This method is to use the default length of MIs, we
set the length of MIs to 1 RTT. According to our experiments, packet
number-based is more sensitive in high-bandwidth environments,
it is somewhat slow in low-bandwidth environments, and RTT-
based is more stable. This is because in a high-bandwidth network
environment, the sender can maintain a higher send rate, and more
packets are sent per unit time, which means that the former can
make more actions per unit time, while at low in a bandwidth
network environment, the number of actions is reduced.

4.4 Model Parameter
Model parameters play a crucial role in training. The details of the
parameters in our model will be described in detail below.

Neural network. The neural network of RL-explore consists of
an actor network and a critic network. The actor network selects
actions according to the input, and the critic network evaluates the
current actions. Among them, the actor network is composed of a
total of 3 layers of 8×64×64×3, and the critic network is 8×64×64×1.

History length. The history length refers to the data generated
after the agent has collected how many actions in the past as the
input of the network. K means that the agent makes decisions
based on the k latest MIs values of the data. In theory, increasing
the history record length should increase performance because it
provides additional information. We choose k=1, k=2, k=4, and
k=8 for experimental verification in Figure 4. Our experimental
results are different from those of Jay N [8], because the delay of
the network environment we set is 20ms, which is much larger than

Figure 4: Cumulative Discount Rewards under Different Pa-
rameters k.

that set by Jay N and others. In subsequent experiments, unless
otherwise specified, k is selected as 1 by default.

Important super parameter. In RL-explore, the settings of
various important hyperparameters are: learning rate lr = 0.002,
discount factor γ = 0.99, β = (0.9, 0.999).

5 RESULTS
We test the performance of our training model in a variety of net-
work scenarios and compare it with those well-known TCP con-
gestion control protocols. We compare RL-explore with other three
typical congestion control algorithms (Reno, Cubic, and pure data-
driven RL) in multiple dimensions.

5.1 Bandwidth Sensitivity
Bandwidth sensitivity can show how much an algorithm utilizes
bandwidth. An algorithm sensitive to bandwidth changes can adjust
its transmission rate more quickly according to the bandwidth in
the network, and can provide a higher QoE(Quality of Experience).

Figure 5 shows that under a fixed bandwidth, the throughput
of the TCP CUBIC algorithm cannot reach the rated bandwidth in
the entire 15s. After TCP RENO reaches the maximum bandwidth,
it will drop rapidly. The overall bandwidth utilization rate shows
a sharp fluctuation state, only RL- Explorer can reach the rated
bandwidth within a few tenths of a second, and the throughput will
remain near the rated bandwidth in the following time.

Figure 6 shows the throughput performance of TCP CUBIC and
RL-explore under varying bandwidth (the blue dashed line rep-
resents the available bandwidth of the link). The throughput of
TCP CUBIC is always a certain distance away from the available
bandwidth. In the first 4s, even a large throughput fluctuation oc-
curs. In most cases, the throughput of RL-explore is close to the
available bandwidth of the link, and it can quickly adapt to changes
in network bandwidth. In Figure 6, the throughput of RL-explore
far exceeds TCP CUBIC in 80% of the cases, and the throughput is
slightly lower than TCP CUBIC in the 12-15 second interval. We
can think that RL-explore can maintain the goal of high throughput
under varying bandwidths.

CSAE 2021, October 19–21, 2021, Sanya, China Mengting Li et al.

Figure 5: A 15-second Trace of Throughput for TCP CUBIC,
TCPRENO and an RL-explore Protocol on a 6 Mbps Band-
width Link.

Figure 6: A 15-second Trace of the Throughput of TCP CU-
BIC and an RL-explore Protocol on a Link which Alternates
between 1.5 and 6. Mbps.

5.2 Latency Sensitivity
Figure 7 is a comparison diagram of the latency between TCP
CUBIC and RL-explore under the same varying bandwidth. The
upper picture is TCP CUBIC, and the lower picture is RL-explore.
The blue line in the figure represents the instantaneous latency of
the algorithm, the green line represents the average delay generated
by the algorithm, and the small red ‘x’ represents packet loss here.

According to Figure 7, it can be found that the average latency
of RL-explore and TCP CUBIC is almost the same, and the instan-
taneous latency of RL-explore is not as smooth as TCP CUBIC. In
addition, there is little difference in packet loss between the two.

5.3 Loss Sensitivity
According to Table 1, in the network environment with varying
bandwidth shown in Figure 5, the number of packets sent and
confirmed by RL-explore far exceeds the TCP CUBIC algorithm,
whichmeans that the throughput of RL-explore is better than that of
TCP CUBIC. It is 42% higher, but the packet loss rate of RL-explore
is also slightly higher than that of TCP CUBIC.

Figure 7: Comparison of TCP CUBIC and RL-Explore Algo-
rithm with Time Delay at Varying Bandwidth as Shown in
Figure 5.

Table 1: TCPCUBIC and RL-explore Are the Statistical Av-
erages of Packet Sending in 10 Experiments in the Varying
Bandwidth Shown in Figure 5

Send Ack Loss Loss rate

TCPCUBIC 19918 19854 64 0.32%
RL-explore 28347 28063 284 1%

6 CONCLUSION AND FUTUREWORK
We gave a brief introduction to RL-explore. At the same time, we
have conducted multiple comparative evaluations of RL-explore
and TCP CUBIC in terms of bandwidth utilization, delay and loss.
The results show that RL-explore can also show more performance
than TCP CUBIC after limited training.

The reason may be because RL-explore will proactively detect
the network bandwidth according to the action and ProbeBWmech-
anisms, and will learn to keep the sending rate near the rated band-
width through training. Therefore, it can always maintain a high
throughput without increasing the average delay.

There are still some shortcomings in the work of this paper. We
only tested it in a simple dumbbell-shaped network topology envi-
ronment. And the fairness of RL-explore and other TCP algorithms
has not been deeply explored, and we will gradually solve these
problems in the follow-up work.

REFERENCES
[1] Ha, Sangtae, Injong Rhee, and Lisong Xu (2008). CUBIC: a new TCP-friendly

high-speed TCP variant. ACM SIGOPS operating systems review, 42(5): 64-74.

A TCP Congestion Control Algorithm Based on Deep Reinforcement Learning Combined with Probe Bandwidth Mechanism CSAE 2021, October 19–21, 2021, Sanya, China

[2] Cardwell, Neal, et al. (2017). BBR: congestion-based congestion control. Commu-
nications of the ACM, 60(2): 58-66.

[3] Jacobson, Van. (1988). Congestion avoidance and control. ACM SIGCOMM com-
puter communication review, 18(4): 314-329.

[4] Sharma, Varun Kumar, Lal Pratap Verma, and Mahesh Kumar (2019). CL-ADSP:
Cross-Layer adaptive data scheduling policy in mobile ad-hoc networks. Future
Generation Computer Systems, 97: 530-563.

[5] Mnih, Volodymyr, et al. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540): 529-533.

[6] Li, Wei, et al. (2018). QTCP: Adaptive congestion control with reinforcement
learning. IEEE Transactions on Network Science and Engineering, 6(3): 445-458.

[7] Floyd, S., T. Henderson and A. Gurtov (1999) . The NewReno Modification to
TCP’s Fast Recovery Algorithm.

[8] Yan, Francis Y., et al. (2018). Pantheon: the training ground for Internet congestion-
control research. 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC}
18).

[9] Jay, Nathan, et al. (2019). A deep reinforcement learning perspective on internet
congestion control. International Conference on Machine Learning. PMLR.

[10] Nie, Xiaohui, et al. (2019). Dynamic TCP initial windows and congestion control
schemes through reinforcement learning. IEEE Journal on Selected Areas in
Communications 37(6): 1231-1247.

[11] Abbasloo, Soheil, Chen-Yu Yen, and H. Jonathan Chao (2019). Make tcp great
(again?!) in cellular networks: A deep reinforcement learning approach. arXiv
preprint arXiv:1912.11735.

[12] Emara, Salma, Baochun Li, and Yanjiao Chen (2020). Eagle: Refining congestion
control by learning from the experts. IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE.

[13] Abbasloo, Soheil, Chen-Yu Yen, and H. Jonathan Chao (2020). Classic meets
modern: A pragmatic learning-based congestion control for the Internet. Pro-
ceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols
for computer communication.

[14] Sutton, Richard S. and Andrew G. Barto (1999). Reinforcement learning: An
introduction. Robotica 17(2): 229-235.

[15] Mnih, Volodymyr, et al. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

[16] Schulman, John, et al. (2017). Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347.

[17] Dong, Mo, et al. (2015). {PCC}: Re-architecting congestion control for consistent
high performance. 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15).

arXiv:1912.11735
arXiv:1312.5602
arXiv:1707.06347

	Abstract
	1 INTRODUCTION
	1.1 Loss-Based Congestion Control
	1.2 RL-Based Congestion Control
	1.3 ProbeBW Combined with RL-Based

	2 RELATED WORK
	2.1 Performance-Oriented Congestion Control
	2.2 Congestion control for specific transmission problems
	2.3 Congestion Control Combined with Traditional Algorithms

	3 DRL APPROACH IS TO CONGESTION CONTROL
	3.1 Background: RL and DRL
	3.2 RL Applied to Congestion Control

	4 MODEL DESIGN
	4.1 Architecture
	4.2 Training
	4.3 Packet-based and RTT-based
	4.4 Model Parameter

	5 RESULTS
	5.1 Bandwidth Sensitivity
	5.2 Latency Sensitivity
	5.3 Loss Sensitivity

	6 CONCLUSION AND FUTURE WORK
	References

